
From Zero to Hero with
OpenShift

Red Hat Forum 2019-10-03, Stockholm
Jimmy Falkbjer, Principal Architect Software

Introduction

• Jonas Björk, Operations
• Kristian Ejvind, Operations
• Mathias Åhsberg, System Developer

• Pernilla Lundqvist, Project Manager
• Niclas Tegnér, System Developer

Goals for the new Environment

• Containers, of course
• Secure

• Services
• Data

• Clear separation of concerns
• Secrets
• Keep up software/frameworks upgrades

• No more monoliths
• Automate as much as possible

• Build and deploy pipeline
• Deploy to production during working hours

Road to production

go! on-prem productionplanningjust playing

May 2017

September 2017

December 2017

February 2018

April 2018

Kubernetes

OpenShift as an
alternative

OpenShift Online
&

OpenShift Container
Platform

OpenShift Online
to

OpenShift Container
Platform

12 services
+

API Gateway

What did we have

prod-adev integration

test cluster 1

test cluster 2 production cluster 2

production cluster 1

external access external access

prod-adev integrationci

Environment

• OpenShift 3.7 on VMware, with two compute/storage tiers per cluster
• Persistent storage using vSphere cloud provider
• One common Elasticsearch instance for all clusters
• One common Openshift Standalone Registry for all clusters

Production

load
balancer

internal
access

service
F

service
B

service
D

firewall

external
access

demo-
service

service
C

service
E

prod-a

Kong

• Øredev, 2016
• Jeremy Seitz - Domain-Driven Desire: API architecture, cross-functional teams,

and war stories around the topic https://vimeo.com/191051851

• . . . based on NGINX, it is Open Source . . .
• Plugin based
• Key Authentication; API key for consumers
• IP Restriction; configure service for internal use
• Prometheus; expose metrics
• Zipkin; distributed tracing
• Pre/Post-function; exchange client certificate
• and some more . . .

Kong configuration

• Configuration via curl commands
curl -X POST "http://localhost:8001/services/" \

-d "name=demo-service" \

-d "url=http://demo-service:8080/api"

curl -X POST "http://localhost:8001/services/demo-service/routes" \

-d "paths[]=/api/demo_service" \

-d "strip_path=true"

curl -X POST "http://localhost:8001/services/demo-service/plugins" \

-d "name=prometheus"

• From version 0.12.2 to 1.3.0, via 9 upgrades, with no downtime

Kong future, perhaps

• Remove curl commands
• Use declarative configuration
• All configuration in yaml format
• oc apply/delete

• Replace HAProxy with Kong Ingress Controller

Service definition
• Endpoints under /api
• OpenAPI spec under /api_docs
• Distributed tracing conforming to OpenTracing standard
• Aggregated application logging to Resurs Bank central log in UTC timestamps
• Validation of JWT authorization header when applicable
• Check required authorities for endpoints when applicable
• Health endpoint (200 OK)
• Metrics endpoint (prometheus format)
• Secrets configured by Operations in Production
• Follow endpoint/naming/coding conventions
• Common error response structure with traceId
• README.md
• Jenkinsfile
• Dockerfile

Spring Boot Service with Starters

• REST
• /api

• API documentation
• /api_docs

• Actuator
• /actuator/*

• Security
• JWT
• Authorities

• Logging
• Error handling
• and more . . .

Service

REST

API doc

Actuator

Security

Logging

and more

Focus on the Business Logic!

Common functionality. Reuse!

Base images by Operations

• RHEL base image
• resurs-minimal:latest

FROM registry.access.redhat.com/rhel7-minimal:latest
RUN yum -y upgrade
COPY Resurs-RootCA.crt /etc/pki/ca-trust/source/anchors

• Java base image
• resurs-minimal-java11:latest

FROM base/resurs-minimal:latest
RUN microdnf update && \

microdnf --enablerepo=rhel-7-server-rpms install java-11-openjdk-headless --nodocs && \
microdnf clean all

Building service image

• demo-service:b141d0b

FROM base/resurs-minimal-java11:latest
ADD demo-service/build/libs/demo-service.jar /app.jar

RUN sh -c 'touch /app.jar'

EXPOSE 8080

ENV JAVA_OPTS="-Djava.security.egd=file:/dev/./urandom"
ENV JAVA_MEM_OPTS=""

ENTRYPOINT ["sh", "-c", "java $JAVA_OPTS $JAVA_MEM_OPTS -jar /app.jar"]

Configuration, take 1

• All configuration in git, including secrets
• Developers create required .yaml files

application.yml, in the source project
spring.application.name: demo-service
client:

connect-timeout: 3000
read-timeout: 15000

spring.profiles: openshift

another-service.url: http://another-service:8080/api
datasource.host: postgres
resurs.cloud.secret.directories: /etc/demo-service/secrets

postgres.yaml

apiVersion: v1
kind: Service
metadata:
name: postgres
namespace: prod-a

spec:
type: ExternalName
externalName: postgres.resurs.loc

configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: demo-service
namespace: prod-a
labels:
app: demo-service

data:
application.yaml: |
spring.profiles: openshift
client:
connect-timeout: 2000
read-timeout: 10000

deployment.yaml
apiVersion: apps/v1beta1
kind: Deployment

- env:
- name: SPRING_PROFILES_ACTIVE
value: openshift

- name: SPRING_CONFIG_LOCATION
value: classpath:application.yml,file:/etc/demo-service/config/application.yaml

volumeMounts:
- mountPath: /etc/demo-service/config
name: demo-service

volumes:
- configMap:

items:
- key: application.yaml
path: application.yaml

name: demo-service
name: demo-service

service.yaml
apiVersion: v1
kind: Service
metadata:
name: demo-service
namespace: prod-a
labels:
app: demo-service

spec:
selector:
app: demo-service

ports:
- name: http
protocol: TCP
port: 8080
targetPort: 8080

type: ClusterIP

Secret

• Operations
• Can see and reveal Secret

• Developers
• Cannot see Secret

• But we wanted version control of our secrets!

apiVersion: v1
kind: Secret
metadata:
name: demo-service-secrets
namespace: prod-a

data:
db.username: UmVhbGx5Pz8/Cg==
db.password: Tm90aGluZ0hlcmUuCg==

SealedSecret

• SealedSecrets by Bitnami
• Kubernetes controller
• Anyone can encrypt
• Only the controller can decrypt

• Operations
• Create SealedSecret
• Add SealedSecret to Git

• Developers
• Can see the SealedSecret

• We have version control of our secrets!

apiVersion: bitnami.com/v1alpha1
kind: SealedSecret
metadata:
name: demo-service-secrets
namespace: prod-a

spec:
encryptedData:
db.username: AgBE7kmxlfs0gbXZZ…
db.password: AgAZ8Qz3J2krU2V8H…

Configuration, take 2

demo-service
└── kubernetes

└── openshift
├── application-dev.yaml
├── application-integration.yaml
├── application-prod.yaml
└── deployment-config.json

deployment-config.json
{

"template": "springboot",
"environments": {

"base": {
"labels": {

"team": "softwaresolutions"
},
"kong": {

"expose": "public"
},
"secrets": [{

"name": "demo-service-secrets",
"mountPath": "/etc/demo-service/secrets"

}]
},
"dev": {

"replicas": 1,
"cpuLimit": 1

},
"integration": {},
"prod": {}

}
}

generated-deployment-list.yaml

• ConfigMap
• application-<environment>.yaml

• Service
• labels
• selector
• namespace
• type
• Ports

• API Gateway configuration
• curl commands

• Deployment
• labels
• namespace
• affinity
• image
• env
• ports
• livenessProbe/readinessProbe
• resources
• volumeMounts

Generated configuration

<namespace>
└── apps

└── demo-service
├── demo-service-secrets.yaml
├── generated-deployment-list.yaml
└── kong-configuration.txt

• apiVersion: apps/v1beta1 à apps/v1beta2 à apps/v1

Pipeline

prod-adev integrationci

operations

developers

pullpullpullpush

promote to production

push

pull
push

Jenkins create PR to Operations

New service with PR template

ServiceDesk Plus integration

• Standard change
• Change management gets what they want
• Deploy to Production, any time, almost . . .

Faster deploy to production

• Legacy environment
• Announce intent to deploy on Thursday, deployed on Tuesday 06.00

• OpenShift
• Approve your PR by 09.00 on Tue/Thu, deployed immediately

• ~800 deployments to Production in 18 months
• < 10 of them have been rolled back

Deploy all services

• oc apply –recursive –f .
• Unfortunately startup order of services matters
• Configure PriorityClass
• Use priorityClassName in Deployment for service

• Flux*
• The state in the cluster matches the configuration in git, automatically

*https://fluxcd.io/

Upgrading OpenShift

• 3.7 à 3.10 was ok, but . . .

Upgrading OpenShift

• 3.7 à 3.10 was ok, but . . .
• 2018-11-20

PV/PVC failed using vSphere-managed storage

E1123 09:44:27.960669 1 vsphere.go:1077]
Failed to get shared datastore:
No shared datastores found in the Kubernetes cluster for nodeVmDetails:

[{NodeName:node1 vm:0xc42501bf20 VMUUID:}
{NodeName:node2 vm:0xc42501bf60 VMUUID:}
{NodeName:node3 vm:0xc42501bfa0 VMUUID:}
{NodeName:nodeX vm:0xc42501bfe0 VMUUID:}]

vSphere Storage will NOT work

• 2018-12-19

This configuration will NOT work.
I(eng) also think that, this never worked in 3.7 too.

• 2019-01-03

In Openshift-3.7 we(I am using we but it is vmware that changed this
code) used to allow provisioning of volumes even if datastores being
used was not shared between all VMs in the cluster.

Ceph

• Decided to move persistent storage from vSphere cloud provider to
Ceph.
• New Ceph cluster installed, spanning both datacenters and all three

compute/storage tiers. Block based (RBD) and S3 style access.

• OpenShift uses RBD storage
• Services use S3 storage

Continuing the upgrade

• Migrate from vSphere cloud provider to Ceph storage
• Upgrade test clusters to 3.11
• Upgrade production clusters to 3.11

• Install and configure new OpenShift 4.2 clusters

Why not 4.1?

• You can disable Telemetry, but …
• You cannot perform subscription management
• No disconnected subscription management

• Waiting for 4.2
• Can we do disconnected subscription management
• Disable Telemetry

Monitoring

• AppDynamics is used for legacy services
• In OpenShift, just a new base image
• FROM base/resurs-minimal-java8-appdyn:latest
• And two AppDynamics environment variables

• But . . .

AppDynamics issues in OpenShift

• Needs agent
• License count not managed properly
• Problems with picking up some traffic
• Dependent of specific technology and versions
• No Java 11 support, yet
• No project Reactor support, yet

CNCF Landscape
https://landscape.cncf.io

Graduated projects

Prometheus in OpenShift

• Prometheus is the de-facto standard for Cloud Native applications
• All services are already Prometheus ready

Prometheus, a CNCF project that collects time-series data as a source for triggering
alerts, has emerged as a leading standard for cloud-native monitoring within
Kubernetes.*

*https://www.redhat.com/en/blog/generally-available-today-red-hat-openshift-container-platform-311-ready-power-enterprise-kubernetes-deployments

Kibana

log_format for Kong

{
"traceId": "$http_x_b3_traceid",
"spanId": "$http_x_b3_spanid",
"consumer": "$http_x_consumer_username",
"status": $status,
"duration": $request_time,
"message": <standard access log format>

}

• duration > 1.5 AND status: 200
• consumer: THE_CONSUMER AND status: 500 AND message: "/api/demo_service/xyz"

Jaeger

New namespace for web application

prod-a

web-b

webapp
apikey

web-a

webapp
apikey

demo-
service

apikey

Status of today

• 85 services
• 11 web applications
• All teams have something running in OpenShift
• Even departments not part of IT

The future, a never ending story

• Legacy application namespace
• Quarkus
• Operators
• OpenShift Pipelines (Tekton)
• Service Catalog
• Serverless with Knative
• Service Mesh
• NetworkPolicy
• Image signing

And finally

• Succeed with a small, focused team
• Make OpenShift the place where the developers want to be
• It’s hard to satisfy everyone
• Automate everything

